IX.-On the Use of Common Thermometers to determine heights. By Lieut.-Col. W. H. Syres, F.R.S.,

Havine been recently applied to by two gentlemen about to travel-the one in Africa and the other in Asia Minor-for a deseription of the thermometers and apparatus used by myself for some years in India for determining heights by the boiling temperature of water, I bave ventured to believe that a brief account of a process which I found to produce results sufficiently near to the truth for most practical purposes, may not be unacceptable to some members of the Society, particularly as I carried on my barometrical observations contemporaneously, and thereby obtained data for fixing the value of certain points on the thermometric scale. To determine heights accurately, good barometers are neoessary, which have been carefully compared with a standard barometer ; the observations must be taken simultaneously at the upper and lower stations, and the temperature of the mercury and the air, and the hygrometrie state of the latter, must be noted. Heights so determined, when tested again in the same or succeeding years, I have rarely found to vary more than 10 or 20 feet in $\mathbf{4 0 0 0}$ or 5000 . When barometers are used which have not been previously compared with a standard, when the observation are not simultaneous, and when the pressure and temperature at the level of the sea are assumed, the results may by.accident be near to the truth, but they will usually be from 100 to 300 feet wrong,-at least such is the result of my experience within the tropics. But good barometers are very costly; they are troublesome to carry, are particularly exposed to accident on a joarney, and get out of order by the escape of the mercary, which being frequently unobserved, the barometer continues to be used as if it were correct. The late Archdeacon Wollaston, aware of these facts, invented the thermometric barometer. to supply the place of the ordinary barometer. This instrumemt is very sensible, but it is very fragile from the great weight of the bolb compared with the slenderness of the stem; moreover, there are some complex accompaniments, and the instrument is also expensive : in short, I found it not fit for rough work out-of-doors, having had three destroyed at the outset of my labours; and the same opinion is expressed by Mr. James Prinsep, of Calcatta, who is well known for the practical application of his scientific knowledge. I had then recourse to common thermometers, and, with certain precautions in their use, found them answer my purpose sufficiently well. A tin shaving-pot was my boiler; dry sticks and pure water were usually to be had, and by

When the boiling point at the upper atation alose is obberred, and for the lower the level of the sea, or the regintar of a distipat barometer is taken, then the barometric reeding had better be converted into foet, by the urual method of, subtracting itic $\mathbf{1 0}^{-5}$ garithm from 1.47712 (log. of 30 inches) and moltiplying her -0006, as the difierences in the column of "baremetr" ". vayrmere rapidly than thowe in the "ffeet" columan.

$$
\begin{aligned}
& \text { Example.-Boiling point at upper itation - } \quad \therefore 180^{\circ}=\mathbf{i 4 F i s} \\
& \text { Berometer at Calculta (at 329) } 29 \mathrm{in.} 75^{\circ} \\
& \text { Logar. diff }=1 \cdot 47712-1 \cdot 47349=00363 \times 0006=218 \\
& \text { Approximate height - - } 14350
\end{aligned}
$$

$$
\begin{aligned}
& \text { Correct altitude - - } 15768
\end{aligned}
$$

Assuming $\mathbf{5 0 . 0 0}$ inches as the average height of the barometers at the level of the see (which is however too much), the altitude of the upper atation is at once obtained by inspection of Table $\mathbf{1}_{\text {, }}$ correcting for temperature of the stratum of air traversed by Table 2.
[Newman, Optician, 122, Regent Street, has been in the habit of making these instruments; he recommends the use of copper brazed, instead of tin, as more durable; and a free escape for the steam, or the results will be incorrect from the boiling taking place under pressure; a model may be seen at the apartments of the Royal Geographical Society.-Ed.]
computed from the formule of the varions experimemers do not accord; but, in three tables which I have in my poseossion, the heights computed by them, when compared with heights determined by corresponding barometrical obwerrations, with previously compared barometert, (the only sativfactory way to ascertain heights not taken trigonometrically,) approximate sufficiently near for all practical purposes where great accuracy in not denired. These tables, however, differ slightly from each other.

The table which first came into my hands appeared anonymously in the Madram Gasette for 1884. In 1826 an able friend, Lieat. Robimson, of the Indian Navy, who entered warmly into my views to determine heights by common thermometers, thought he could improve upon the table I was using, and accordingly made new computation; the third table came under my notice mach more recently than the two former. It is computed by Mr. Jannes Prinsep, of Calcutta, Secretary of the Asiatic Society of Bengal, a gentleman distinguished for his scientific renearch. He published it in the Journal of the Society. To admit of a just entimate being formed of the value of thene tables,-of the value of corresponding barometrical observations, made with due precautions, although with different coadjutors and different instruments,-of the value of barometrical observations, with an assomed pressure and temperature, at the level of the sea,-of the value of thermometrical compared with barometrical observations,-out of many hundred heights determined in various ways, I have taken many at random, (the number it appears is eighty-eight,) and I have put them into juxtaposition in a tabular form. In thermometric heights the elements at the level of the sea were a boiling temperature of 212° Fahr. and a mean temperature of the air of 82°. The assumed pressure in heights determined barometrically, without corresponding observations, was 30 inches; mean temperature 820. In looking over the tabulated results I was a good deal surprised to find that in no instance, by whatever method determined, do the barometric differences in height exceed 197 feet, and this only by comparing the highest indications with an assumed pressure with the lowest indications of corresponding observations. It will be seen that the various tables for determining heights thermometrically, with certain exceptions, do not differ very materially in their results from each other, nor from corresponding barometric observations; the formule on which they are founded may therefore be considered, on the whole, sufficiently accurate for the present state of our knowledge.

Lieut. Robinson's and Mr. Prinsep's tables give close approximations to each other in their results, but they are as much below
the corresponding bamometric observations, which I consider the true heights, as the results by the Madras table are above the true heights. Some of them curiously coincide within a foot or two of the heights determined by corresponding barometrical observations, but this coincidence must be the result of mere accident. Taking the mean of all the thermometric observations at a station calculated by the three tables, and the mean of all the corresponding banometric observations at the same plaoe, the utmost difference is 107 feet in less than 600; and the least difference is 8 feet in about 3000 ; but, as the thermometric heights in which the difference of 107 feet ocours were single observations, made by a gentleman who had newly begun to use his. thermometers, they may be looked upon as probably less accurate: than subsequent trials would have made them. This is scarcely an' unjust inference, as it will be seen that the next greatest difference; made by the same gentleman was only 24 feet in 4490 . It must beadmitted however that this amount of error is just as likely to occarin heights of 100 feet as in those of 10,000 . My thermometers were not graduated to less than half-degrees, and long practice enabled me to determine the height of the mercury in the stem to one-twentieth of a degree; but I would recommend thermometers being used in which the degrees are graduated to fifths or tenths of a degree. On the whole, I think the results of six years' experience justify me in saying that common thermometers may be satisfactorily used to supply the place of barometers in measuring heights where great accuracy is not required, and it will be recollected that what is usually looked upon as a difficulf and troublesome operation with barometers, will be attainable by any person who carries with him a couple of thermometers, the requisite tin pot, and the tables, and who is master of the simplesi rules of arithmetic.

Of the three tables in my possession I have chosen Mr. Prinsep's to submit to the Society, from their perspicuity and the facilities they offer for the conversion of boiling temperatures intd heights with very little trouble; but a glance over the figures in my tables of altitudes will show that the tables are susceptible of considerable improvement, for, with two exceptions, all the heights deduced from Mr. Prinsep's and Lieut. Robinson's are much below those determined by simultaneous observations with good barometers; and I join with Mr. Prinsep in expressing a hope that every traveller boiling his thermometers will at the same time, if he possess a barometer, make a record of its indications, and thus render essential service to physics by fixing so many points on the scale of the elastic tension of steam at different temperatures.

Table 1.

TV find the Barometric Pressure and Elevation corresponding to any obeerved Exapernture of Boning Water betwoce 8140 and 1800.

$\begin{aligned} & \text { Boiling } \\ & \text { Point } \\ & \text { of Water. } \end{aligned}$	Barometer Modified from Tredgold's Formula	Logarithmic Differences or Fathoms.	Total Altitude from 30.00 in . or the Level of the See.	Value of each Degree in Feet of Altitude.	Proportional Part for Opetenth of a Degree.
\bigcirc			Feet.	Feot.	Feet.
214	31.19 30.69	00.84.3	-1013	-505	.
213 818	30.69 30.00	84.5	507	-507	
211	29.42	84.9 ,	+509	+509	31
210	28.85	88.9	1021	511	.
209	28.29	85.8	1534	513 815	-.
208	27.73	85.8 86.2	2049	515	-
207	27.18	86.6	2566	519	52
206	26.64	87.1	3085	522	-
205	25.11	87.6	3607	684	\bullet
203	25.08	87.8	4657	526	\cdots
202	24.58	88.1	5185	528	33
201	24.08	88.5	5716	531 533	3
200	23.59	88.9 89.8	6250	533 536	\cdots
199	23.11	89.8	6786	538	\bullet
198	98.64	89.1	7324	541	64
197	22.17	90.5	7864	543	-.
196	21.71	91.0	8407	546	\cdots
194	21.26	91.4	8953	548	35
193	20.39	91.8	10053	551	
192	19.96	92.2	10606	553	
191	19.64	92.6 93.0	11161	558 558	
190	19.13	93.0 93.4	11719	558 560	56
189	18.72	93.8	12280	563	-
188	18.32	94.2	12843	565	37
186	17.54	94.8	13977	569	
185	17.16	95.3 95.9	14548	572 575	58
184	16.79	96.4	15124	575 578	-.
183	16.42 16.06	96.4 96.9	15702	581	-
182	16.06 15.70	97.4	16284 16868	584	\because
180	15.35	97.9	17455	587	39

The Fourth Colum gives the Eleights in Feet.

Table ε^{2}

Table of Maltiplioss to correct the Approximate Foight for the Temperatare of the Δ in

Temperature of the Air.	Multiplier.	Temperature of the Air.	Maltiplier.	Temperature of the Air.	Maliplias:
0		-		\bigcirc	
32	1.000	52	1.042	- 78	1.083
33	1.002	53	1.044	73	1.085
34	1.004	54	1.046	74	1.087
35	1.006	55	1.048	75	1.089
36	1.008	56	1.050	76	1.091
37	1.010	57	1.052	77	1.094
38	1.012	58	1.054	78	1.096
39	1.015	59	1.056	79	1.098
40	1.017	60	1.058	80	1.100
41	1.019	61	1.060	81	1.102
42	1.021	62	1.062	82	1.104
43	1.023	63	1.064	83	1.106
44	I. 025	64	1.066	84	1.108
45	J. 027	65	1.069	85	1.110
46	1.029	66	1.071	86	1.112
47	1.031	67	1.073	87	1.114
48	1.033	68	1.075	88	1.116
49	1.035	69	1.077	89	1.118
50	1.037	70	1.079	90	1.121
51	1.089	71	1.081	91	1.123

Knter with the mean temperature of the stratum of air traversed, and maltiply the approximate height by the number opposite, for the true Altitude.

When the thermometer has been boiled at the foot and at the summit of a mountain, nothing more is necessary than to deduct the number in the column of feet opposite the boiling point below from the same of the boiling point above: this gives an approximate height, to be multiplied by the number opposite the mean temperature of the air in Table 2, for the correct altitude.

When the boiling point at the upper station alone is observed, and for the lower the level of the sea, or the register of a distinct barometer is taken, then the barometric reading had better be converted into feet, by the usual method of subtracting its logarithm from 1.47712 (log. of 30 inches) and multiplying by -0006, as the differences in the column of "baremeter" vary more rapidly than thone in the "feet" column.

Example.-Boiling point at upper station - - $185^{\circ}=$ Barometer at Calcutta (at 32°) $29 \mathrm{in} .75^{\circ}$ Logar. diff. $=1 \cdot 47712-1 \cdot 47349=00363 \times 0006=$						$\begin{array}{r} \text { Poot. } \\ 14548 \\ \\ 218 \end{array}$
	$\left.\begin{array}{rrr} \begin{array}{r} \text { Approximate height } \end{array} & - & 14330 \\ \text { mperature, upper station, } 76^{\circ} \\ \text { Ditto } & \text { lower, } & 84^{\circ} \end{array}\right\} 80=\text { multiplier } \quad 1 \cdot 100$					
	Correct altitude - - - 15763					

Assuming 30.00 inches as the average height of the barometer at the level of the sea (which is however too much), the altitude of the upper station is at once obtained by inspection of Table 1, correcting for temperature of the stratum of air traversed by Table 2.
[Newman, Optician, 122, Regent Street, has been in the habit of making these instruments; he recommends the use of copper brazed, instead of tin, as more durable; and a free eacape for the steam, or the results will be incorrect from the boiling taking place under pressure; a model may be seen at the apartments of the Royal Geographical Society.-Ed.]

